
Download free eBooks at bookboon.com

Perl for Beginners

18

Operators

4 Operators

4.1 Number and string operators

In program (1) we saw the operator +, which as you would expect takes a pair of numerical values and
gives their sum. Likewise - is used as a minus sign. Some further operators (not a complete list, but the
ones you are most likely to need) include:

* multiplication
/ division
** exponentiation: 2 ** 3 means 23, i.e. eight

These operators apply to numerical values, but others apply to character-strings. Notably, the full stop .
represents concatenation (making one string out of two):

$p = "witch";
$q = "craft";
$r = $p . $q;
print $r;

witchcraft

(Beware of possible confusion here. Some programming languages make the plus sign do double duty, to
represent concatenation of strings as well as addition of numbers, but in Perl the plus sign is used only for
numerical values.)

Another string operator is x (the letter x), which is used to concatenate a string with itself a given
number of times: "a" x 6 is equivalent to "aaaaaa", "pom" x 3 is equivalent to
"pompompom". (And "pom" x 0 would yield the empty string – the length-zero string containing no
characters – which is more straightforwardly specified as "".)

Note, by the way, that for Perl a single character is just a string of length one – there is no difference, as
there is for instance in C, between "a" and 'a', these are equivalent ways of representing the length-
one string containing just the character a. However, single and double quotation marks are not always
equivalent. Perl uses backslash as an escape character to create codes for string elements which would be
awkward to type: for instance, \n represents a newline character, and \t a tab. Between double
quotation marks these sequences are interpreted as codes:

print "witch\ncraft";

witch
craft

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

19

Operators

but between single quotation marks they are taken literally:

print 'witch\ncraft';

witch\ncraft

In practice this means that you will almost always want to use double rather than single quotation marks.
If you do want to include a backslash character within a string defined within double quotation marks, you
code it as \\; and likewise \" and \' code quotation marks that are part of a string. When you
display a line you will commonly want to end it with a newline, so that it doesn’t run into whatever is
displayed next. Thus:

print "Don\'t say \"never\".\n";

Don't say "never".

There are rules of precedence among the various operator symbols. Thus, the sequence 2 + 3 * 4
will yield the result 14 (not 20), because * has higher precedence than +. Here the relative precedence
probably seems obvious, because it is the same in school algebra: multiplications are done before
additions, not the other way round. But it is not always so easy to predict the precedence. Are you
confident that you know whether 12 / 3 * 2 would give eight or two? Rather than learning all the
precedence rules by heart, it is much easier to avoid the issue by using brackets: (12 / 3) * 2 is
eight, 12 / (3 * 2) is two.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Perl for Beginners

20

Operators

A detailed Perl manual will give the full rules of precedence, together with a number of less-used
operators not covered here. But many successful Perl programmers are hazy about a few of the more
arcane operators – and I wonder whether anyone is confident about every detail of the precedence rules.
Brackets are easier.

Incidentally, although the main purpose of an assignment statement, such as $a = 0, is to give the
symbol on the left a value, Perl regards the entire statement as an expression with a value (its value is the
value assigned by the equals sign). This means that if we want to initialize various variables with the same
value, we don’t need to write separate assignment statements

$a = 0;
$b = 0;
$c = 0;

– it is enough to write $a = $b = $c = 0. An expression like this is interpreted as if it were written
$a = ($b = ($c = 0))): $c is straightforwardly assigned the value zero, then $b is assigned the
value ($c = 0), which is itself zero – and $a is assigned the value ($b = 0), which is again zero.

4.2 Combining operator and assignment

One thing that a programmer very often needs to do is to change the value of a variable by applying some
arithmetic operation to its current value – say, adding the value of another variable:

$a = $a + $b;

Because this is such a frequent thing, it can be abbreviated by combining the operator and the assignment
symbol:

$a += $b;

and likewise $a -= $b means “reduce the value of $a by that of $b”, and so forth:

$a = 21;
$b = 3;
$a /= $b;
print $a;

7

Very often, the arithmetic operation consists of either adding or subtracting one; these operations can be
further abbreviated to ++ and --:

$a = 20;
++ $a;
print $a;

21

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

21

Operators

(There is a subtle difference between ++ $a and $a ++, in terms of when the addition happens. A
beginner is recommended always to put ++ or -- before the variable to which it applies, in which case
the addition or subtraction is carried out before the variable is used in any further operations.)

4.3 Truth-value operators

The operators seen so far give either a number or a string as their result. There are also operators which
yield the answers “true” or “false”. To see how these work, consider that very often we want a program to
branch: if so-and-so then do this, otherwise do that (or, do nothing). Branching is handled by a
construction like this:

if ($a > 100)
 {
 print "It\'s big.\n";
 }
⋮

When the program reaches this section of code, it checks whether the current value of $a is over 100; if
so, the code between curly brackets is executed, i.e. the message is printed out, otherwise that block of
code is ignored; and in either case the program then moves on to whatever statements follow after the
closing curly bracket. Obviously > means “is greater than”, so it yields either the value “true” or the
value “false”: 6 > 5 gives “true”, 6 > 6 or 6 > 7 give “false”.5

The meaning of > is straightforward, and likewise < means “is less than”, >= and <= mean “is
greater/less than or equal to”, and != means “is not equal to”. The big stumbling block, which often
leads experienced programmers into careless mistakes, comes from the fact that, most often, one wants to
ask whether some value “is equal to” another. The Perl for “is equal to” is == (two equals signs).

It is all too easy to write something like:

if ($a = 100)
 {
 ⋮
 }

thinking that you are testing whether $a is equal to 100. You aren’t. A single equals sign is the
assignment symbol: it means “make the thing on my left be equal to the thing on my right”. So a computer
encountering if ($a = 100) will first change whatever value $a previously had to the value 100,
and then decide what to do with the if by considering the “truth value” of 100. A number does not
really have a truth-value, of course, but for reasons that we can skip over here Perl will treat the number
100 as “true”; so it will do whatever is given within the curly brackets. Try it:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

22

Operators

$a = 2;
if ($a = 100)
 {
 print "It\'s one hundred.\n";
 }

It's one hundred.

or even

$a = "pomegranate";
if ($a = 100)
 {
 print "It\'s one hundred.\n";
 }

It's one hundred.

I have spelled this out at length, because the mistake is so easy to make. To test for equality between
numerical values you need two equals signs. A single equals sign does not test anything, it assigns a value.

A further complication is that ==, !=, >, and so forth can only be used to compare numerical values.
Often, one wants to check whether two strings are the same or different. For strings, “is equal to” is
symbolized as eq (and “is not equal to” is ne). Thus:

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Perl for Beginners

23

Operators

(2)

1 $a = "pomegranate";
2 if ($a eq "Pomegranate")
3 {
4 print "They\'re the same.\n";
5 }
6 if ($a ne "Pomegranate")
7 {
8 print "They\'re different.\n";
9 }

They're different.

(Lower case versus capital makes the strings unequal.) You must not use == or != in 2.2 or 2.6 – if
you do, Perl will apply the wrong test (and perl -w will issue a warning).

The keywords eq and ne are the string-comparison counterparts of the number-comparison operators
== and !=.6 There are also string-comparison counterparts to <, >=, etc. For instance, when
comparing strings, lt means “is less than” and ge means “is greater than or equal to”. What “less”
and “greater” refer to in this case is the sorting sequence for strings; for instance, the string band is
“greater than” ban but “less than” bang. But this is a specialized kind of string comparison, which
many programmers never need to use. For most purposes, eq and ne are the only string-comparison
operators needed.

The symbols and, or, and not apply to expressions which have truth-values to give further truth-values.
X and Y is true if both X and Y are true, and false if either or both is false. X or Y is true if either one
of X and Y is true. The expression not X is true if X is false, and false if X is true. So, for instance,

(3 > 2) and not (4 < 5)

gives “false”. The expression to the left of and is true; but 4 < 5 is true, so the expression to the
right of and, namely “not (4 < 5)”, is false. “True and false” gives false.7

We saw above that Perl includes some shortcuts, such as *= or ++, which achieve conciseness by
merging operation and assignment symbolically. There is also one construction which does something
similar with a truth-value operator: the three-place ?: construction. Instead of (2), we could have written:

(3)

1 $a = "pomegranate";
2 $b = "They\'re the same.\n";
3 $c = "They\'re different.\n";
4 $d = ($a eq "Pomegranate" ? $b : $c);
5 print $d;

They're different.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

24

Operators

What the structure X ? Y : Z does is to say “Is X true or false? If it is true, then the value of the
whole construction is Y; if X is false, then the value of the whole construction is Z.” In this case, the value
of $a eq "Pomegranate" is “false” (because $a begins with lower-case p); so $d is assigned
the value of $c rather than that of $b, and hence $c is what is printed out.

In this toy example, the code using ?: is not much shorter than the code it replaced. But in realistic
programming situations, ?: can often be very handy.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

